Resolution enhancement of saturated fluorescence emission difference microscopy
نویسندگان
چکیده
منابع مشابه
Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy
We propose a novel physical mechanism for breaking the diffraction barrier in the far field. Termed fluorescence emission difference microscopy (FED), our approach is based on the intensity difference between two differently acquired images. When fluorescence saturation is applied, the resolving ability of FED can be further enhanced. A detailed theoretical analysis and a series of simulation t...
متن کاملFluorescence microscopy with diffraction resolution barrier broken by stimulated emission.
The diffraction barrier responsible for a finite focal spot size and limited resolution in far-field fluorescence microscopy has been fundamentally broken. This is accomplished by quenching excited organic molecules at the rim of the focal spot through stimulated emission. Along the optic axis, the spot size was reduced by up to 6 times beyond the diffraction barrier. The simultaneous 2-fold im...
متن کاملExtended resolution fluorescence microscopy.
Fluorescence microscopy is an essential tool of modern biology, but, like all forms of optical imaging, it is subject to physical limits on its resolving power. In recent years, several exciting techniques have been introduced to exceed these limits, including standing wave microscopy, 4Pi confocal microscopy, I5M and structured illumination microscopy. Several such techniques have been definit...
متن کاملResolution enhancement techniques in microscopy
We survey the history of resolution enhancement techniques in microscopy and their impact on current research in biomedicine. Often these techniques are labeled superresolution, or enhanced resolution microscopy, or light-optical nanoscopy. First, we introduce the development of diffraction theory in its relation to enhanced resolution; then we explore the foundations of resolution as expounded...
متن کاملConcepts for nanoscale resolution in fluorescence microscopy.
Spatio-temporal visualization of cellular structures by fluorescence microscopy has become indispensable in biology. However, the resolution of conventional fluorescence microscopy is limited by diffraction to about 180 nm in the focal plane and to about 500 nm along the optic axis. Recently, concepts have emerged that overcome the diffraction resolution barrier fundamentally. Formed on the bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2016
ISSN: 1094-4087
DOI: 10.1364/oe.24.023596