Research on Hopf Bifurcation of a 4D Hyperchaotic System

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On hopf bifurcation of Liu chaotic system

Since the pioneering work of Lorenz [1] and Rössler [2], it has been known that chaos can occur in systems of autonomous ordinary differential equations with as few as three variables and one or two quadratic nonlinearities. Many other chaotic systems have been discovered over the last years [3–7]. There have been extensive investigations on dynamical behaviors of these chaotic systems [8–14]. ...

متن کامل

Hopf Bifurcation for a New Chaotic System

In this paper, a three dimensional autonomous chaotic system is considered. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived with the help of normal form theory. Finally, a numerical example is given. Keyw...

متن کامل

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...

متن کامل

Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system

Based on Rabinovich system, a 4D Rabinovich system is generalized to study hidden attractors, multiple limit cycles and boundedness of motion. In the sense of coexisting attractors, the remarkable finding is that the proposed system has hidden hyperchaotic attractors around a unique stable equilibrium. To understand the complex dynamics of the system, some basic properties, such as Lyapunov exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2017

ISSN: 2324-7991,2324-8009

DOI: 10.12677/aam.2017.64056