Research on bearing diagnosis technology based on wavelet transform and one-dimensional convolutional neural network
نویسندگان
چکیده
Aiming at the fault diagnosis of rolling element bearings, propose a method for fine bearings based on wavelet transform and one-dimensional convolutional neural network. First use to decompose experimental data; Use resulting low-frequency signal as network input, bearing identification. The experiment uses deep groove ball Case Western Reserve University research object, this identify normal outer ring faults bearing. result shows: This can be effectively applied precise identification bearings.
منابع مشابه
Short term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملBearing Fault Diagnosis Based on Laplace Wavelet Transform
The roller bearing characteristic frequencies contain very little energy, and are usually overwhelmed by noise and higher levels of structural vibrations. Therefore, envelope spectrum analysis is widely used to detection bearing localized fault. In order to overcome the shortcomings in the traditional envelope analysis in which manually specifying a resonant frequency band is required, a new ap...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملImage Retrieval Based on Wavelet Transform and Neural Network Classification
The problem of retrieving images from a database is considered. In particular, we retrieve images belonging to one of the following six categories: 1) commercial planes in land, 2) commercial planes in air, 3) war planes in land, 4) war planes in air, 5) small aircraft in land, and 6) small aircraft in the air. During training, a wavelet-based description of each image is first calculated using...
متن کاملRecognition of convolutional neural network based on CUDA Technology
For the problem whether Graphic Processing Unit(GPU),the stream processor with high performance of floating— point computing is applicable to neural networks, this paper proposes the parallel recognition algorithm of Convolutional Neural Networks(CNNs).It adopts Compute Unified Device Architecture(CUDA)technology, definite the parallel data structures, and describes the mapping mechanism for co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATEC web of conferences
سال: 2021
ISSN: ['2261-236X', '2274-7214']
DOI: https://doi.org/10.1051/matecconf/202133601010