Representation growth of linear groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation Growth of Linear Groups

Let Γ be a group and rn(Γ) the number of its n-dimensional irreducible complex representations. We define and study the associated representation zeta function ZΓ(s) = ∞ ∑ n=1 rn(Γ)n . When Γ is an arithmetic group satisfying the congruence subgroup property then ZΓ(s) has an “Euler factorization”. The “factor at infinity” is sometimes called the “Witten zeta function” counting the rational rep...

متن کامل

Representation Growth for Linear Groups

Let Γ be a group and rn(Γ) the number of its n-dimensional irreducible complex representations. We define and study the associated representation zeta function ZΓ(s) = ∞ ∑ n=1 rn(Γ)n . When Γ is an arithmetic group satisfying the congruence subgroup property then ZΓ(s) has an “Euler factorization”. The “factor at infinity” is sometimes called the “Witten zeta function” counting the rational rep...

متن کامل

The Growth of Linear Groups

Let G be a group generated by a finite subset S; define S to be the set Ž . < n < of all products of at most n elements of S, and let a S s S be the n n Ž . Ž . Ž . Ž . number of elements in S . As a S satisfies 1 F a S F a S ? a S , n nqm n m Ž .1r n Ž . Ž .1r n the limit lim a S exists, and a S s lim a S G 1. Although the n n Ž . exact value of a S depends on the generating set S, it is well ...

متن کامل

Representation stability and finite linear groups

We construct analogues of FI-modules where the role of the symmetric group is played by the general linear groups and the symplectic groups over finite rings and prove basic structural properties such as Noetherianity. Applications include a proof of the Lannes– Schwartz Artinian conjecture in the generic representation theory of finite fields, very general homological stability theorems with t...

متن کامل

Arithmetic groups have rational representation growth

Let Γ be an arithmetic lattice in a semisimple algebraic group over a number field. We show that if Γ has the congruence subgroup property, then the number of n-dimensional irreducible representations of Γ grows like n, where α is a rational number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the European Mathematical Society

سال: 2008

ISSN: 1435-9855

DOI: 10.4171/jems/113