Removable singularities for analytic functions in BMO and locally Lipschitz spaces
نویسندگان
چکیده
منابع مشابه
Removable singularities for analytic functions in BMO and locally Lipschitz spaces
In this paper we study removable singularities for holomorphic functions such that supz∈Ω |f (z)|dist(z, ∂Ω) < ∞. Spaces of this type include spaces of holomorphic functions in Campanato classes, BMO and locally Lipschitz classes. Dolzhenko (1963), Král (1976) and Nguyen (1979) characterized removable singularities for some of these spaces. However, they used a different removability concept th...
متن کاملRemovable singularities for Hardy spaces
In this paper we study removable singularities for Hardy spaces of analytic functions on general domains. Two different definitions are given. For compact sets they turn out to be equal and moreover independent of the surrounding domain, as was proved by D. A. Hejhal. For non-compact sets the difference between the definitions is studied. A survey of the present knowledge is given, except for t...
متن کاملRemovable singularities for weighted Bergman spaces
We develop a theory of removable singularities for the weighted Bergman space Aμ(Ω) = {f analytic in Ω : R Ω |f | dμ < ∞}, where μ is a Radon measure on C. The set A is weakly removable for Aμ(Ω \ A) if Aμ(Ω \ A) ⊂ Hol(Ω), and strongly removable for Aμ(Ω \A) if Aμ(Ω \A) = Aμ(Ω). The general theory developed is in many ways similar to the theory of removable singularities for Hardy H spaces, BMO...
متن کاملRemovable Singularities for Analytic Varieties in Strongly Pseudoconvex Domains
Let M be a closed maximally complex submanifold of some relatively compact open subset A of the boundary of a strictly pseudoconvex domain Ω of C. We find an open domain à of Ω, depending only on Ω and A, and a complex variety with isolated singularities W ⊂ à such that bW ∩ A = M .
متن کاملMappings of Finite Distortion: Removable Singularities for Locally Homeomorphic Mappings
Let f be a locally homeomorphic mapping of finite distortion in dimension larger than two. We show that when the distortion of f satisfies a certain subexponential integrability condition, small sets are removable. The smallness is measured by a weighted modulus.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2003
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-003-0524-0