Remote sensing retrieval of chlorophyll-a concentration in Dianchi lake based on orbita hyperspectral imagery

نویسندگان

چکیده

æ°´ä½“å¶ç»¿ç´ a ,即Chla(chlorophyll-aï¼‰æµ“åº¦æ˜¯è¡¨å¾æ°´ä½“å¯Œè¥å »åŒ–ç¨‹åº¦çš„å ³é”®æ€§æŒ‡æ ‡ï¼Œå¯¹äºŽæ°´çŽ¯å¢ƒè¯„ä¼°å’Œæ°´è´¨é¥æ„Ÿç›‘æµ‹å ·æœ‰é‡è¦æ„ä¹‰ã€‚æ¬§æ¯”ç‰¹é«˜å ‰è°±å«æ˜Ÿæ˜¯ä¸­å›½äºŽ2018å¹´å‘å°„çš„æ–°ä¸€ä»£é«˜å ‰è°±å«æ˜Ÿï¼Œç„¶è€Œå ¶åœ¨å† é™†æ°´ä½“æ°´è´¨é¥æ„Ÿç›‘æµ‹çš„é€‚ç”¨æ€§ä»æœ‰å¾ éªŒè¯ã€‚æœ¬ç ”ç©¶ä»¥é«˜åŽŸå¯Œè¥å »åŒ–æ¹–æ³Šæ»‡æ± ä¸ºç ”ç©¶åŒºï¼Œä»¥å¶ç»¿ç´ aæµ“åº¦ä¸ºåæ¼”æŒ‡æ ‡ï¼Œåˆ©ç”¨æ»‡æ± ä¸¤æ¬¡é‡Žå¤–çŽ°åœºå®žæµ‹æ•°æ®å’Œæ¬§æ¯”ç‰¹é«˜å ‰è°±OHS(Orbita Hyperspectralï¼‰å½±åƒï¼Œé€šè¿‡åˆ†æžæ»‡æ± æ°´ä½“çš„å ‰å­¦ç‰¹æ€§ï¼Œæž„å»ºäº†é€‚ç”¨äºŽæ¬§æ¯”ç‰¹é«˜å ‰è°±å½±åƒçš„æ»‡æ± aæµ“åº¦é¥æ„Ÿåæ¼”æ¨¡åž‹ï¼Œå¹¶é€šè¿‡æ˜Ÿåœ°åŒæ­¥æ•°æ®éªŒè¯äº†åæ¼”æ¨¡åž‹çš„æœ‰æ•ˆæ€§ä¸Žå¯è¡Œæ€§ï¼ŒèŽ·å¾—äº†æ»‡æ± å¶ç»¿ç´ aæµ“åº¦çš„ç©ºé—´æ ¼å±€ã€‚ç»“æžœè¡¨æ˜Žï¼šï¼ˆ1)波段比值模型(B17/B9)适合于基于欧比特高å a浓度的遥感反演,模型反演精度较高,决定系数(R2)为0.804ï¼Œå‡æ–¹æ ¹è¯¯å·®ï¼ˆRMSE)和平均绝对误差百分比(MAPE)分别为6.99 μg/L和6.32%;(2)2019å¹´4月2æ—¥æ»‡æ± a浓度呈现出由湖岸向湖泊中心逐渐降低的趋势,东北部与东南部呈幂函数型递减,西北部呈线性递减;(3ï¼‰æ»‡æ± æ¬§æ¯”ç‰¹é«˜å ‰è°±å½±åƒçš„è¿‘å²¸4ä¸ªæ°´ä½“åƒå ƒæ˜“å—åˆ°é™†åœ°é‚»è¿‘æ•ˆåº”çš„å½±å“ã€‚æœ¬ç ”ç©¶æå‡ºçš„åŸºäºŽæ¬§æ¯”ç‰¹é«˜å ‰è°±å½±åƒçš„æ³¢æ®µæ¯”å€¼æ¨¡åž‹èƒ½å¤Ÿå®žçŽ°æ»‡æ± aæµ“åº¦çš„é¥æ„Ÿåæ¼”ï¼Œä¸ºå† é™†å¯Œè¥å »åŒ–æ°´ä½“å¶ç»¿ç´ a浓度的遥感监测提供了一种新的思路与方法。

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Impervious Surface Information Extraction Based on Hyperspectral Remote Sensing Imagery

The retrieval of impervious surface information is a hot topic in remote sensing. However, researches on impervious surface retrieval from hyperspectral remote sensing imagery are rare. This paper illustrates a case study of information extraction from urban impervious surfaces based on hyperspectral remote sensing imagery that is intended to improve the image spectral resolution of impermeable...

متن کامل

overlap-based feature weighting: the feature extraction of hyperspectral remote sensing imagery

hyperspectral sensors provide a large number of spectral bands. this massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. we propose to use overlap-based feature weigh...

متن کامل

Anomaly Detection from Hyperspectral Remote Sensing Imagery

Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) da...

متن کامل

Kernel-Based Nonparametric Fisher Classifier for Hyperspectral Remote Sensing Imagery

Hyperspectral Imagery Sensing (HIS) is widely gained tremendous popularity in many research areas such as remotely sensed satellite imaging and aerial reconnaissance. HIS is an important technique with the measurement, analysis, and interpretation of spectra acquired sensing scene an airborne or satellite sensor. The development of sensor technology brought the developing of collecting image da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2022

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20211264