Remarks on star covering properties in pseudocompact spaces
نویسندگان
چکیده
منابع مشابه
Remarks on Star Countable Discrete Closed Spaces
In this paper, we prove the following statements: (1) There exists a Tychonoff star countable discrete closed, pseudocompact space having a regular-closed subspace which is not star countable. (2) Every separable space can be embedded into an absolutely star countable discrete closed space as a closed subspace. (3) Assuming 20 = 21 , there exists a normal absolutely star countable discrete clos...
متن کاملMaximal pseudocompact spaces
Maximal pseudocompact spaces (i.e. pseudocompact spaces possessing no strictly stronger pseudocompact topology) are characterized. It is shown that submaximal pseudocompact spaces whose pseudocompact subspaces are closed need not be maximal pseudocompact. Various techniques for constructing maximal pseudocompact spaces are described. Maximal pseudocompactness is compared to maximal feeble compa...
متن کاملOn Holonomy Covering Spaces
Introduction. In [l] L. Markus and the author introduced the concept of holonomy covering spaces for flat affinely connected manifolds or what are also called locally affine spaces. We also proved in [l ] that the holonomy covering space of a complete « dimensional locally affine space must be some « dimensional cylinder, i.e., T^XF"-*, i = 0, •■-,«, where T* denotes the locally affine i dimens...
متن کاملSpaces Whose Pseudocompact Subspaces Are Closed Subsets
Every first countable pseudocompact Tychonoff space X has the property that every pseudocompact subspace of X is a closed subset of X (denoted herein by “FCC”). We study the property FCC and several closely related ones, and focus on the behavior of extension and other spaces which have one or more of these properties. Characterization, embedding and product theorems are obtained, and some exam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematica Bohemica
سال: 2013
ISSN: 0862-7959,2464-7136
DOI: 10.21136/mb.2013.143288