Remarks on Multiplicative Atom-Bond Connectivity Index

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Second Atom-Bond Connectivity Index

The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G)  uvE (G ) (du dv  2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.

متن کامل

A Note on Atom Bond Connectivity Index

The atom bond connectivity index of a graph is a new topological index was defined by E. Estrada as ABC(G)  uvE (dG(u) dG(v) 2) / dG(u)dG(v) , where G d ( u ) denotes degree of vertex u. In this paper we present some bounds of this new topological index.

متن کامل

On generalized atom-bond connectivity index of cacti

The generalized atom-bond connectivity index of a graph G is denoted by ABCa(G) and defined as the sum of weights ((d(u)+d(v)-2)/d(u)d(v))aa$ over all edges uv∊G. A cactus is a graph in which any two cycles have at most one common vertex. In this paper, we compute sharp bounds for  ABCa index for cacti of order $n$ ...

متن کامل

On Atom-Bond Connectivity Index

The atom-bond connectivity (ABC) index, introduced by Estrada et al. in 1998, displays an excellent correlation with the formation heat of alkanes. We give upper bounds for this graph invariant using the number of vertices, the number of edges, the Randić connectivity indices, and the first Zagreb index. We determine the unique tree with the maximum ABC index among trees with given numbers of v...

متن کامل

a note on atom bond connectivity index

the atom bond connectivity index of a graph is a new topological index was defined by e.estrada as abc(g)  uve (dg(u) dg(v) 2) / dg(u)dg(v) , where g d ( u ) denotes degreeof vertex u. in this paper we present some bounds of this new topological index.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2920882