Remarks on Grothendieck rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Relative Grothendieck Rings

Let K be a field of characteristic pi^O, to exclude trivial cases) and let G be a finite goup. A XG-module M is a finite dimensional K-vector space, on which G acts Jf-linearly from the left. The Green ring a(G) of G(w.r.t. K) is the free abelian group, spanned by the isomorphism classes of indecomposable i£G-modules, with the multiplication induced from the tensor product © x of KGmodules (see...

متن کامل

Some Remarks on Affine Rings

Various topics on affine rings are considered, such as the relationship between Gelfand-Kirillov dimension and Krull dimension, and when a "locally affine" algebra is affine. The dimension result is applied to study prime ideals in fixed rings of finite groups, and in identity components of group-graded rings. 0. Introduction. We study affine rings (i.e., rings finitely generated as algebras ov...

متن کامل

SOME REMARKS ON ALMOST UNISERIAL RINGS AND MODULES

In this paper we study almost uniserial rings and modules. An R−module M is called almost uniserial if any two nonisomorphic submodules are linearly ordered by inclusion. A ring R is an almost left uniserial ring if R_R is almost uniserial. We give some necessary and sufficient condition for an Artinian ring to be almost left uniserial.

متن کامل

Picard Groups, Grothendieck Rings, and Burnside Rings of Categories

We discuss the Picard group, the Grothendieck ring, and the Burnside ring of a symmetric monoidal category, and we consider examples from algebra, homological algebra, topology, and algebraic geometry. In October, 1999, a small conference was held at the University of Chicago in honor of Saunders Mac Lane’s 90th birthday. I gave a talk there based on a paper that I happened to have started writ...

متن کامل

Schemic Grothendieck Rings I: Motivic Sites

We propose a suitable substitute for the classical Grothendieck ring of an algebraically closed field, in which any quasi-projective scheme is represented with its non-reduced structure. This yields a more subtle invariant, called the schemic Grothendieck ring. In order to include open subschemes and their complements, we introduce formal motives. Although originally cast in terms of definabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1967

ISSN: 0040-8735

DOI: 10.2748/tmj/1178243284