Reliability Assessment of an Unscented Kalman Filter by Using Ellipsoidal Enclosure Techniques

نویسندگان

چکیده

The Unscented Kalman Filter (UKF) is widely used for the state, disturbance, and parameter estimation of nonlinear dynamic systems, which both process measurement uncertainties are represented in a probabilistic form. Although UKF can often be shown to more reliable processes than linearization-based Extended (EKF) due enhanced approximation capabilities its underlying probability distribution, it not priori obvious whether strategy selecting sigma points sufficiently accurate handle nonlinearities system dynamics output equations. Such inaccuracies may arise strong combination with large covariances. Then, computationally demanding approaches such as particle filters or representation (multi-modal) densities help (Gaussian) mixture representations possible ways resolve this issue. To detect cases systematic manner that reliably handled by standard EKF UKF, paper proposes computation outer bounds state domains compatible certain percentage confidence under assumption normally distributed states set-based ellipsoidal calculus. practical applicability approach demonstrated variables parameters an unmanned surface vessel (USV).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Tractography Using an Unscented Kalman Filter

We describe a technique to simultaneously estimate a local neural fiber model and trace out its path. Existing techniques estimate the local fiber orientation at each voxel independently so there is no running knowledge of confidence in the estimated fiber model. We formulate fiber tracking as recursive estimation: at each step of tracing the fiber, the current estimate is guided by the previou...

متن کامل

Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter

The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...

متن کامل

Initializing An Unscented Kalman Filter Using A Particle Filter

This work develops an algorithm to initialize an Unscented Kalman Filter using a Particle Filter for applications with initial non-Gaussian probability density functions. The method is applied to estimating the position of a road vehicle along a one-mile test track using terrain-based localization where the pitch response of the vehicle is compared to a premeasured pitch map of the test track. ...

متن کامل

The Unscented Kalman Filter

In this book, the extended Kalman filter (EKF) has been used as the standard technique for performing recursive nonlinear estimation. The EKF algorithm, however, provides only an approximation to optimal nonlinear estimation. In this chapter, we point out the underlying assumptions and flaws in the EKF, and present an alternative filter with performance superior to that of the EKF. This algorit...

متن کامل

Parametric contour tracking using unscented Kalman filter

This paper presents an efficient method to integrate various spatial-temporal constraints to regularize the contour tracking. Specifically, the global shape prior, contour smoothness and object dynamics are addressed. First, the contour is represented as a parametric shape, based on which a causal smoothness constraint can be developed to exploit the local spatial constraint. The causality natu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10163011