Relaxation time constant based optical coherence elastography
نویسندگان
چکیده
منابع مشابه
Digital image correlation-based optical coherence elastography.
Optical coherence elastography (OCE) provides deformation or material properties, mapping of soft tissue. We aim to develop a robust speckle tracking OCE technique with improved resolution and accuracy. A digital image correlation (DIC)-based OCE technique was developed by combining an advanced DIC algorithm with optical coherence tomography (OCT). System calibration and measurement error evalu...
متن کاملSpectroscopic optical coherence elastography
We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomogr...
متن کاملCrawling wave optical coherence elastography.
Elastography is a technique that measures and maps the local elastic property of biological tissues. Aiming for detection of micron-scale inclusions, various optical elastography, especially optical coherence elastography (OCE), techniques have been investigated over the past decade. The challenges of current optical elastography methods include the decrease in elastographic resolution as compa...
متن کاملOptical coherence elastography in ophthalmology.
Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We des...
متن کاملIn vivo three-dimensional optical coherence elastography◊
We present the first three-dimensional (3D) data sets recorded using optical coherence elastography (OCE). Uni-axial strain rate was measured on human skin in vivo using a spectral-domain optical coherence tomography (OCT) system providing >450 times higher line rate than previously reported for in vivo OCE imaging. Mechanical excitation was applied at a frequency of 125 Hz using a ring actuato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biophotonics
سال: 2020
ISSN: 1864-063X,1864-0648
DOI: 10.1002/jbio.201960233