Relative rigid objects in extriangulated categories

نویسندگان

چکیده

In this paper, we study a close relationship between relative cluster tilting theory in extriangulated categories and τ-tilting module categories. Our main results show that rigid objects are bijection with τ-rigid pairs, also maximal support pairs under some assumptions. These generalize the work by Adachi-Iyama-Reiten, Yang-Zhu Fu-Geng-Liu. addition, introduce mutation of any basic almost object has exactly two non-isomorphic indecomposable complements. All highlight new phenomena when they applied to exact

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigid Objects in Higher Cluster Categories

We study maximal m-rigid objects in the m-cluster category C H associated with a finite dimensional hereditary algebra H with n nonisomorphic simple modules. We show that all maximal m-rigid objects in these categories have exactly n nonisomorphic indecomposable summands, and that any almost complete m-rigid object in C H has exactly m + 1 nonisomorphic complements. We also show that the maxima...

متن کامل

Gorenstein projective objects in Abelian categories

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

متن کامل

gorenstein projective objects in abelian categories

let $mathcal {a}$ be an abelian category with enough projective objects and $mathcal {x}$ be a full subcategory of $mathcal {a}$. we define gorenstein projective objects with respect to $mathcal {x}$ and $mathcal{y}_{mathcal{x}}$, respectively, where $mathcal{y}_{mathcal{x}}$=${ yin ch(mathcal {a})| y$ is acyclic and $z_{n}yinmathcal{x}}$. we point out that under certain hypotheses, these two g...

متن کامل

Objects in Triangulated Categories

We introduce the Calabi-Yau (CY) objects in a Hom-finite Krull-Schmidt triangulated k-category, and notice that the structure of the minimal, consequently all the CY objects, can be described. The relation between indecomposable CY objects and Auslander-Reiten triangles is provided. Finally we classify all the CY modules of selfinjective Nakayama algebras, determining this way the self-injectiv...

متن کامل

Relative Ampleness in Rigid Geometry

We develop a rigid-analytic theory of relative ampleness for line bundles and record some applications to faithfully flat descent for morphisms and proper geometric objects. The basic definition is fibral, but pointwise arguments from the algebraic and complex-analytic cases do not apply, so we use cohomological properties of formal schemes over completions of local rings on rigid spaces. An an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2022

ISSN: ['1873-1376', '0022-4049']

DOI: https://doi.org/10.1016/j.jpaa.2021.106923