RELATIVE RELATION MODULES OF FINITE ELEMENTARY ABELIAN p-GROUPS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modules for Elementary Abelian p-groups

Let E ∼= (Z/p)r (r ≥ 2) be an elementary abelian p-group and let k be an algebraically closed field of characteristic p. A finite dimensional kE-module M is said to have constant Jordan type if the restriction of M to every cyclic shifted subgroup of kE has the same Jordan canonical form. I shall begin by discussing theorems and conjectures which restrict the possible Jordan canonical form. The...

متن کامل

Pseudo-Free Families of Finite Computational Elementary Abelian p-Groups

We initiate the study of (weakly) pseudo-free families of computational elementary abelian pgroups, where p is an arbitrary fixed prime. We restrict ourselves to families of computational elementary abelian p-groups Gd such that for every index d, each element of Gd is represented by a single bit string of length polynomial in the length of d. First, we prove that pseudo-freeness and weak pseud...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

Large Abelian Subgroups of Finite p-Groups

It would be interesting to extend this result by allowing B to have nilpotence class 2 instead of necessarily being abelian. This cannot be done if p = 2 (Example 4.2), but perhaps it is possible for p odd. (It was done by the author ([Gor, p.274]; [HB, III, p.21]) for the special case in which p is odd and [B,B] ≤ A.) However, there is an application of Thompson’s Replacement Theorem that can ...

متن کامل

THE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS

A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2014

ISSN: 1015-8634

DOI: 10.4134/bkms.2014.51.4.1205