Relative n-isoclinism classes and relative n-th nilpotency degree of finite groups
نویسندگان
چکیده
منابع مشابه
Relative n-th non-commuting graphs of finite groups
Suppose $n$ is a fixed positive integer. We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$, associated to the non-abelian subgroup $H$ of group $G$. The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G : [x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$. Moreover, ${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...
متن کاملrelative n-th non-commuting graphs of finite groups
suppose $n$ is a fixed positive integer. we introduce the relative n-th non-commuting graph $gamma^{n} _{h,g}$, associated to the non-abelian subgroup $h$ of group $g$. the vertex set is $gsetminus c^n_{h,g}$ in which $c^n_{h,g} = {xin g : [x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin h}$. moreover, ${x,y}$ is an edge if $x$ or $y$ belong to $h$ and $xy^{n}eq y^{n}x$ or $x...
متن کاملRelative N-th Non-commuting Graphs of Finite Groups
Suppose n is a fixed positive integer. We introduce the relative n-th non-commuting graph ΓH,G, associated to the nonabelian subgroup H of group G. The vertex set is G \ C H,G in which C H,G = {x ∈ G : [x, y] = 1 and [x, y] = 1 for all y ∈ H}. Moreover, {x, y} is an edge if x or y belong to H and xy 6= yx or xy 6= yx. In fact, the relative n-th commutativity degree, Pn(H,G) the probability that...
متن کاملProbability of having $n^{th}$-roots and n-centrality of two classes of groups
In this paper, we consider the finitely 2-generated groups $K(s,l)$ and $G_m$ as follows:$$K(s,l)=langle a,b|ab^s=b^la, ba^s=a^lbrangle,\G_m=langle a,b|a^m=b^m=1, {[a,b]}^a=[a,b], {[a,b]}^b=[a,b]rangle$$ and find the explicit formulas for the probability of having nth-roots for them. Also, we investigate integers n for which, these groups are n-central.
متن کاملNILPOTENCY AND SOLUBILITY OF GROUPS RELATIVE TO AN AUTOMORPHISM
In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2013
ISSN: 0354-5180
DOI: 10.2298/fil1302365e