Relative compactness of orbits and geometry of Banach spaces

نویسندگان

چکیده

We investigate for a bounded semigroup of linear operators S on Banach space E and vector x∈E, when relative compactness S(I−T)x every T∈S implies the orbit Sx. In particular, we derive characterizations separable spaces not containing c0 reflexivity with Schauder basis in terms such results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Compactness in Vector-valued Banach Function Spaces

We give a new proof of a recent characterization by Diaz and Mayoral of compactness in the Lebesgue-Bochner spaces L X , where X is a Banach space and 1 ≤ p < ∞, and extend the result to vector-valued Banach function spaces EX , where E is a Banach function space with order continuous norm. Let X be a Banach space. The problem of describing the compact sets in the Lebesgue-Bochner spaces LpX , ...

متن کامل

amenability of banach algebras

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

15 صفحه اول

Compactness in L 1 , D - P Operators , Geometry of Banach Spaces

A type of oscillation modeled on BMO is introduced to characterize norm compactness in L 1. This result is used to characterize the bounded linear operators from L 1 into a Banach space X that map weakly convergent sequences onto norm convergent sequences (i.e. are Dunford-Pettis). This characterization is used to study the geometry of Banach spaces X with the property that all bounded linear o...

متن کامل

Randomized Series and Geometry of Banach Spaces

Abstract. We study some properties of the randomized series and their applications to the geometric structure of Banach spaces. For n ≥ 2 and 1 < p < ∞, it is shown that l ∞ is representable in a Banach space X if and only if it is representable in the Lebesgue-Bochner Lp(X). New criteria for various convexity properties in Banach spaces are also studied. It is proved that a Banach lattice E is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2021

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2020.124660