منابع مشابه
Logistic Tensor Factorization for Multi-Relational Data
Tensor factorizations have become increasingly popular approaches for various learning tasks on structured data. In this work, we extend the Rescal tensor factorization, which has shown state-of-the-art results for multi-relational learning, to account for the binary nature of adjacency tensors. We study the improvements that can be gained via this approach on various benchmark datasets and sho...
متن کاملScaling Factorization Machines to Relational Data
The most common approach in predictive modeling is to describe cases with feature vectors (aka design matrix). Many machine learning methods such as linear regression or support vector machines rely on this representation. However, when the underlying data has strong relational patterns, especially relations with high cardinality, the design matrix can get very large which can make learning and...
متن کاملA Bayesian Matrix Factorization Model for Relational Data
Relational learning can be used to augment one data source with other correlated sources of information, to improve predictive accuracy. We frame a large class of relational learning problems as matrix factorization problems, and propose a hierarchical Bayesian model. Training our Bayesian model using random-walk Metropolis-Hastings is impractically slow, and so we develop a block MetropolisHas...
متن کاملModelling Relational Data using Bayesian Clustered Tensor Factorization
We consider the problem of learning probabilistic models for complex relational structures between various types of objects. A model can help us “understand” a dataset of relational facts in at least two ways, by finding interpretable structure in the data, and by supporting predictions, or inferences about whether particular unobserved relations are likely to be true. Often there is a tradeoff...
متن کاملRegularized Non-Negative Matrix Factorization for Dynamic and Relational Data
Data involving repeated measurements of several variables over different factors, experimental conditions or time may exhibit correlations among variables, as well as between factors. The discovery of these underlying, meaningful relations is important to a wide variety of areas such as psychology, signal processing, finance, among others. Common methods such as independent component analysis, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2017
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-017-5660-6