Relating Newton's method to projection methods for eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Projection Methods for Nonlinear Sparse Eigenvalue Problems
This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.
متن کاملA projection method for generalized eigenvalue problems
In this paper, we propose a method for finding certain eigenvalues of a generalized eigenvalue problem that lie in a given domain of the complex plane. The proposed method projects the matrix pencil onto a subspace associated with the eigenvalues that are located in the domain via numerical integration. The projection produces a small pencil with Hankel matrices.
متن کاملNumerical Method for Three-parameter Eigenvalue Problems using Newtons method based on Trace Theorem
Atkinson, F. V. ,1972. 'Multiparameter Eigenvalue Problems', (Matrices and compact operators) Academic Press, New York, Vol. 1 Atkinson, F. V. , 1968. 'Multiparameter spectral theory', Bull. Am. Math. Soc. , Vol. 75, pp(1-28) Baruah, A. K. , 1987. 'Estimation of eigen elements in a two-parameter eigen value problem', Ph. D Thesis, Dibrugarh University, Assam. Bindi...
متن کاملIterative Projection Methods for Large–scale Nonlinear Eigenvalue Problems
In this presentation we review iterative projection methods for sparse nonlinear eigenvalue problems which have proven to be very efficient. Here the eigenvalue problem is projected to a subspace V of small dimension which yields approximate eigenpairs. If an error tolerance is not met then the search space V is expanded in an iterative way with the aim that some of the eigenvalues of the reduc...
متن کاملHarmonic projection methods for large non-symmetric eigenvalue problems
The problem of finding interior eigenvalues of a large nonsymmetric matrix is examined. A procedure for extracting approximate eigenpairs from a subspace is discussed. It is related to the Rayleigh–Ritz procedure, but is designed for finding interior eigenvalues. Harmonic Ritz values and other approximate eigenvalues are generated. This procedure can be applied to the Arnoldi method, to precond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1993
ISSN: 0893-9659
DOI: 10.1016/0893-9659(93)90112-z