Reinforcement Learning in Financial Markets
نویسندگان
چکیده
منابع مشابه
Machine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملAdaptive Learning in Financial Markets
We investigate adaptive or evolutionary learning in a repeated version of the Grossman and Stiglitz (1980) model. We demonstrate that any process that is a monotonic selection dynamic will converge to the rational expectations asset demands if the proportion of informed traders is fixed. We also show that these learning processes have a unique asymptotically stable fixed point at the Grossman–S...
متن کاملDevelopment of Reinforcement Learning Algorithm to Study the Capacity Withholding in Electricity Energy Markets
This paper addresses the possibility of capacity withholding by energy producers, who seek to increase the market price and their own profits. The energy market is simulated as an iterative game, where each state game corresponds to an hourly energy auction with uniform pricing mechanism. The producers are modeled as agents that interact with their environment through reinforcement learning (RL...
متن کاملMachine Learning Applications in Financial Markets
2 Acknowledgments I would like to thank my guide, Professor Saketh Nath for his constant help, support and guidance. Abstract Stock market prediction with data mining techniques is one of the most important issues to be investigated. We intend to present a system that predicts the changes of stock trend by analyzing the influence of news articles.
متن کاملMaking Financial Trading by Recurrent Reinforcement Learning
In this paper we propose a financial trading system whose strategy is developed by means of an artificial neural network approach based on a recurrent reinforcement learning algorithm. In general terms, this kind of approach consists in specifying a trading policy based on some predetermined investor’s measure of profitability, and in setting the financial trading system while using it. In part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Data
سال: 2019
ISSN: 2306-5729
DOI: 10.3390/data4030110