Regularization and Constraints in Fuzzy c-Means and Possibilistic Clustering
نویسندگان
چکیده
منابع مشابه
Kernel-based fuzzy and possibilistic c-means clustering
The 'kernel method' has attracted great attention with the development of support vector machine (SVM) and has been studied in a general way. In this paper, this 'method' is extended to the well-known fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms. It is realized by substitution of a kernel-induced distance metric for the original Euclidean distance, and the corresponding algori...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملPrivacy Preserving Probabilistic Possibilistic Fuzzy C Means Clustering
Due to this uncontrollable growth of data, clustering played major role to partition into a small sets to do relevant processes within the small sets. Recently, the privacy and security are extra vital essentials when data is large and the data is distributed to other sources for various purposes. According to that, the privacy preservation should be done before distributing the data. In this s...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Japan Society for Fuzzy Theory and Systems
سال: 2001
ISSN: 0915-647X,2432-9932
DOI: 10.3156/jfuzzy.13.6_707