Regularity for the Navier--Stokes equations with slip boundary condition
نویسندگان
چکیده
منابع مشابه
Vorticity layers of the 2D Navier-Stokes equations with a slip type boundary condition
We study the asymptotic behavior, at small viscosity ε, of the NavierStokes equations in a 2D curved domain. The Navier-Stokes equations are supplemented with the slip boundary condition, which is a special case of the Navier friction boundary condition where the friction coefficient is equal to two times the curvature on the boundary. We construct an artificial function, which is called a corr...
متن کاملUniform Regularity for the Navier-stokes Equation with Navier Boundary Condition
We prove that there exists an interval of time which is uniform in the vanishing viscosity limit and for which the Navier-Stokes equation with Navier boundary condition has a strong solution. This solution is uniformly bounded in a conormal Sobolev space and has only one normal derivative bounded in L∞. This allows to get the vanishing viscosity limit to the incompressible Euler system from a s...
متن کاملExact Controllability for the Three-dimensional Navier-Stokes Equations with the Navier Slip Boundary Conditions
In this paper we establish the local exact internal controllability of steady state solutions for the Navier-Stokes equations in three-dimensional bounded domains, with the Navier slip boundary conditions. The proof is based on a Carlemantype estimate for the backward Stokes equations with the same boundary conditions, which is also established here.
متن کاملViscous boundary layers for the Navier-Stokes equations with the Navier slip conditions
We tackle the issue of the inviscid limit of the incompressible Navier-Stokes equations when the Navier slip-with-friction conditions are prescribed on the impermeable boundaries. We justify an asymptotic expansion which involves a weak amplitude boundary layer, with the same thickness as in Prandtl’s theory and a linear behavior. This analysis holds for general regular domains, in both dimensi...
متن کاملGevrey Regularity for Navier–stokes Equations under Lions Boundary Conditions
The Navier–Stokes system is considered in a compact Riemannian manifold. Gevrey class regularity is proven under Lions boundary conditions in the cases of the 2D Rectangle, Cylinder, and Hemisphere. The cases of the 2D Sphere and 2D and 3D Torus are also revisited. MSC2010: 35Q30, 76D03
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2008
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-08-09472-0