Regular, unit-regular, and idempotent elements of semigroups of transformations that preserve a partition

نویسندگان

چکیده

Let $X$ be a set and $\mathcal{T}_X$ the full transformation semigroup on $X$. For partition $\mathcal{P}$ of $X$, we consider semigroups $T(X, \mathcal{P}) = \{f\in \mathcal{T}_X| (\forall X_i\in (\exists X_j \in \mathcal{P})\;X_i f \subseteq X_j\}$, $\Sigma(X, T(X, \mathcal{P})|(\forall X_i \mathcal{P})\; Xf \cap \neq \emptyset\}$, $\Gamma(X, \mathcal{T}_X|(\forall \mathcal{P})(\exists X_j\in X_j\}$. We characterize unit-regular elements both \mathcal{P})$ for finite discuss inclusion between certain transformations preserving $\mathcal{P}$. count regular idempotents \mathcal{P})$. prove that every element is also calculate size

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On certain semigroups of transformations that preserve double direction equivalence

Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).

متن کامل

Regular centralizers of idempotent transformations

Denote by T (X) the semigroup of full transformations on a set X. For ε ∈ T (X), the centralizer of ε is a subsemigroup of T (X) defined by C(ε) = {α ∈ T (X) : αε = εα}. It is well known that C(idX) = T (X) is a regular semigroup. By a theorem proved by J.M. Howie in 1966, we know that if X is finite, then the subsemigroup generated by the idempotents of C(idX) contains all non-invertible trans...

متن کامل

Idempotent-separating extensions of regular semigroups

For a regular biordered set E, the notion of E-diagram and the associated regular semigroup was introduced in our previous paper (1995). Given a regular biordered set E, an E-diagram in a category C is a collection of objects, indexed by the elements of E and morphisms of C satisfying certain compatibility conditions. With such an E-diagram A we associate a regular semigroup RegE(A) having E as...

متن کامل

Regular Elements of Some Semigroups of Order-Preserving Partial Transformations

Let X be a chain, OP (X) the order-preserving partial transformation semigroup on X and OI(X) the order-preserving 1–1 partial transformation semigroup on X. It is known that both OP (X) and OI(X) are regular semigroups. We extend these results by characterizing the regular elements of the semigroups OP (X,Y ), OI(X,Y ), OP (X,Y ) and OI(X,Y ) where ∅ = Y ⊆ X,OP (X,Y ) = {α ∈ OP (X) | ranα ⊆ Y ...

متن کامل

Rings in which elements are the sum of an‎ ‎idempotent and a regular element

Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Semigroup Forum

سال: 2021

ISSN: ['0037-1912', '1432-2137']

DOI: https://doi.org/10.1007/s00233-021-10238-2