Regular sets on the projective line

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On linear sets on a projective line

Linear sets generalise the concept of subgeometries in a projective space. They have many applications in finite geometry. In this paper we address two problems for linear sets: the equivalence problem and the intersection problem. We consider linear sets as quotient geometries and determine the exact conditions for two linear sets to be equivalent. This is then used to determine in which cases...

متن کامل

Projective maximal submodules of extending regular modules

We show  that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of  Dung and   Smith. As another consequen...

متن کامل

On the Convexity of Projective, Smooth Sets

Let us assume every Chebyshev matrix is bounded and multiply Poisson. Recent developments in absolute graph theory [14] have raised the question of whether V −1 (C −∞) ⊂ ∑ ξ (∅+ π, . . . , ∅ ∨ i) . We show that |τ̄ | 6= −1. A central problem in advanced algebra is the derivation of Tate fields. This could shed important light on a conjecture of Desargues.

متن کامل

On Regular Generalized $delta$-closed Sets in Topological Spaces

In this paper a new class of sets called  regular generalized  $delta$-closed set (briefly rg$delta$-closed set)is introduced and its properties are studied. Several examples are provided to illustrate the behaviour of these new class of sets.

متن کامل

Heights on the Finite Projective Line

Define the height function h(a) = min{k + (ka mod p) : k = 1, 2, . . . , p − 1} for a ∈ {0, 1, . . . , p − 1.} It is proved that the height has peaks at p, (p+1)/2, and (p+c)/3, that these peaks occur at a = [p/3], (p−3)/2, (p− 1)/2, [2p/3], p − 3, p− 2, and p − 1, and that h(a) ≤ p/3 for all other values of a. 1. Heights on finite projective spaces Let p be an odd prime and let Fp = Z/pZ and F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry

سال: 1986

ISSN: 0047-2468,1420-8997

DOI: 10.1007/bf01224556