Regular projectively Anosov flows with compact leaves
نویسندگان
چکیده
منابع مشابه
On Contact Anosov Flows
The study of decay of correlations for hyperbolic systems goes back to the work of Sinai [36] and Ruelle [32]. While a manifold of results were obtained thru the years for maps, some positive results have been established for Anosov flows only recently. Notwithstanding the proof of ergodicity, and mixing, for geodesic flows on manifolds of negative curvature [15, 1, 35] the first quantitative r...
متن کاملLyapunov functions and Anosov flows
We show that if the codimension one Anosov flow Φ on a compact n-manifold M satisfies the so called condition (L), then there is a continuous Lyapunov function g : R → R, where R is the universal covering space of M , such that g strictly increases along the orbits of the lift of Φ and is constant on the leaves of the lift of the strong stable foliation of the “synchronization” (i.e. suitable r...
متن کاملLipschitz Distributions and Anosov Flows
We show that if a distribution is locally spanned by Lipschitz vector fields and is involutive a.e., then it is uniquely integrable giving rise to a Lipschitz foliation with leaves of class C1,Lip. As a consequence, we show that every codimension-one Anosov flow on a compact manifold of dimension > 3 such that the sum of its strong distributions is Lipschitz, admits a global cross section. The ...
متن کاملAnosov Flows of Codimension One
1995 The dissertation of Slobodan Simi c is approved, and is acceptable in quality and form for publication on microolm: Chair Date Date Date 1 Abstract Anosov Flows of Codimension One The main goal of this dissertation is to show the existence of global cross sections for certain classes of Anosov ows. Let be a C 2 codimension one Anosov ow on a compact Riemannian manifold M of dimension great...
متن کاملCharacterizations of Regular Almost Periodicity in Compact Minimal Abelian Flows
Regular almost periodicity in compact minimal abelian flows was characterized for the case of discrete acting group by W. Gottschalk and G. Hedlund and for the case of 0-dimensional phase space by W. Gottschalk a few decades ago. In 1995 J. Egawa gave characterizations for the case when the acting group is R. We extend Egawa’s results to the case of an arbitrary abelian acting group and a not n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2004
ISSN: 0373-0956
DOI: 10.5802/aif.2026