Regular hypergraphs, Gordon's lemma, Steinitz' lemma and invariant theory
نویسندگان
چکیده
منابع مشابه
Regular hypergraphs, Gordon's lemma, Steinitz' lemma and invariant theory
Let D(n)(D(n, k)) denote the maximum possible d such that there exists a d-regular hypergraph (d-regular k-uniform hypergraph, respectively) on n vertices containing no proper regular spanning subhypergraph. The problem of estimating D(n) arises in Game Theory and Huckemann and Jurkat were the first to prove that it is finite. Here we give two new simple proofs that D(n), D(n, k) are finite, an...
متن کاملThe counting lemma for regular k-uniform hypergraphs
Szemerédi’s Regularity Lemma proved to be a powerful tool in the area of extremal graph theory. Many of its applications are based on its accompanying Counting Lemma: If G is an `-partite graph with V (G) = V1 ∪ · · · ∪ V` and |Vi| = n for all i ∈ [`], and all pairs (Vi, Vj) are ε-regular of density d for 1 ≤ i < j ≤ ` and ε d, then G contains (1± f`(ε))d “ ` 2 ” × n` cliques K`, where f`(ε) → ...
متن کاملA Sparse Regular Approximation Lemma
We introduce a new variant of Szemerédi’s regularity lemma which we call the sparse regular approximation lemma (SRAL). The input to this lemma is a graph G of edge density p and parameters , δ, where we think of δ as a constant. The goal is to construct an -regular partition of G while having the freedom to add/remove up to δ|E(G)| edges. As we show here, this weaker variant of the regularity ...
متن کاملRegularity Lemma for k-uniform hypergraphs
Szemerédi’s Regularity Lemma proved to be a very powerful tool in extremal graph theory with a large number of applications. Chung [Regularity lemmas for hypergraphs and quasi-randomness, Random Structures and Algorithms 2 (1991), 241–252], Frankl and Rödl [The uniformity lemma for hypergraphs, Graphs and Combinatorics 8 (1992), 309–312, Extremal problems on set systems, Random Structures and A...
متن کاملA counting lemma for sparse pseudorandom hypergraphs
Our main result tells us that mild density and pseudorandom conditions allow one to prove certain counting lemmas for a restricted class of subhypergraphs in a sparse setting. As an application, we present a variant of a universality result of Rödl for sparse, 3-uniform hypergraphs contained in strongly pseudorandom hypergraphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1986
ISSN: 0097-3165
DOI: 10.1016/0097-3165(86)90026-9