Regional controllability analysis of fractional diffusion equations with Riemann–Liouville time fractional derivatives
نویسندگان
چکیده
منابع مشابه
Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab
The term fractional calculus is more than 300 years old. It is a generalization of the ordinary differentiation and integration to non-integer (arbitrary) order. The subject is as old as the calculus of differentiation and goes back to times when Leibniz, Gauss, and Newton invented this kind of calculation. In a letter to L’Hospital in 1695 Leibniz raised the following question (Miller and Ross...
متن کاملControllability of Fractional Stochastic Delay Equations
0 g(s, x(s), x(s− τ(s))) (t− s)1−α dω(s), t ∈ J = [0, T ], x(t) = ψ(t), t ∈ [−r, 0], (1.1) where 0 < α ≤ 1, T > 0 and A is a linear closed operator , defined on a given Hilbert space X . It is assumed that A generates an analytic semigroup S(t), t ≥ 0. The state x(.) takes its values in the Hilbert spaceX , and the control function u(.) is in L2(J, U), the Hilbert space of admissible control fu...
متن کاملFractional chemotaxis diffusion equations.
We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modeling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macromolecular crowding. The mesoscopic models are formulated using continuous time random walk equations and the macroscopic models are formulated with fractiona...
متن کاملInhomogeneous Fractional Diffusion Equations
Fractional diffusion equations are abstract partial differential equations that involve fractional derivatives in space and time. They are useful to model anomalous diffusion, where a plume of particles spreads in a different manner than the classical diffusion equation predicts. An initial value problem involving a space-fractional diffusion equation is an abstract Cauchy problem, whose analyt...
متن کاملApproximate Controllability of Fractional Integrodifferential Evolution Equations
This paper addresses the issue of approximate controllability for a class of control systemwhich is represented bynonlinear fractional integrodifferential equations with nonlocal conditions. By using semigroup theory, p-mean continuity and fractional calculations, a set of sufficient conditions, are formulated and proved for the nonlinear fractional control systems. More precisely, the results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2017
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2016.10.018