Refining the general comparison theorem for the Klein–Gordon equation
نویسندگان
چکیده
By recasting the Klein–Gordon equation as an eigen-equation in coupling parameter [Formula: see text] basic comparison theorem may be written text], where and are monotone nondecreasing shapes of two central potentials on text]. Meanwhile, corresponding parameters that functions energy We weaken sufficient condition for ground-state spectral ordering by proving (for example dimension) if couplings remain ordered ground-states corresponding, respectively to a given This result is extended spherically symmetric radial dimensions.
منابع مشابه
the evaluation and comparison of two esp textbooks available on the iranian market for teaching english to the students of medicine
abstract this study evaluated and compared medical terminology and english for the students of medicine (ii) as two representatives of the textbooks available on the iranian market for teaching english to the students of medicine. this research was performed on the basis of a teacher’s and a number of students’ attitudes and the students’ needs analysis for two reasons: first, to investigate...
15 صفحه اولSpecial comparison theorem for the Dirac equation.
If a central vector potential V(r,a) in the Dirac equation is monotonic in a parameter a, then a discrete eigenvalue E(a) is monotonic in a. For such a special class of comparisons, this generalizes an earlier comparison theorem that was restricted to node free states. Moreover, the present theorem applies to every discrete eigenvalue.
متن کاملSpectral Comparison Theorem for the Dirac Equation
We consider a single particle which is bound by a central potential and obeys the Dirac equation. We compare two cases in which the masses are the same but Va < Vb, where V is the time-component of a vector potential. We prove generally that for each discrete eigenvalue E whose corresponding (large and small) radial wave functions have no nodes, it necessarily follows that Ea < Eb. As an illust...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولGeneral theorem on the Schrödinger equation.
It is unnecessary, nowadays, to point out the importance of the Schrodinger equation to disciplines of science and technology. In principle, one can understand any natural phenomenon if one can solve the corresponding Schrodinger equations. Unfortunately, the Schrodinger equation can only be analytically solved in a few special cases. Therefore, it is very important to know the properties of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Physics E-nuclear Physics
سال: 2021
ISSN: ['0218-3013', '1793-6608']
DOI: https://doi.org/10.1142/s0218301321500038