Refining Ensembles of Predicted Gene Regulatory Networks Based on Characteristic Interaction Sets
نویسندگان
چکیده
منابع مشابه
Refining Ensembles of Predicted Gene Regulatory Networks Based on Characteristic Interaction Sets
Different ensemble voting approaches have been successfully applied for reverse-engineering of gene regulatory networks. They are based on the assumption that a good approximation of true network structure can be derived by considering the frequencies of individual interactions in a large number of predicted networks. Such approximations are typically superior in terms of prediction quality and...
متن کاملAnalysis of Gene Sets Based on the Underlying Regulatory Network
Networks are often used to represent the interactions among genes and proteins. These interactions are known to play an important role in vital cell functions and should be included in the analysis of genes that are differentially expressed. Methods of gene set analysis take advantage of external biological information and analyze a priori defined sets of genes. These methods can potentially pr...
متن کاملEfficient computation of minimal perturbation sets in gene regulatory networks
In the last few decades, technological and experimental advancements have enabled a more precise understanding of the mode of action of drugs with respect to human cell signaling pathways and have positively influenced the design of new drug compounds. However, as the design of compounds has become increasingly target-specific, the overall effects of a drug on adjacent cellular signaling pathwa...
متن کاملInference of Gene Regulatory Network Based on Local Bayesian Networks
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-...
متن کاملOn Artificial Gene Regulatory Networks
Gene regulatory networks (GRNs) represent dependencies between genes and their products during protein synthesis at the molecular level. At the present there exist many inference methods that infer GRNs form observed data. However, gene expression data sets have in general considerable noise that make understanding and learning even simple regulatory patterns difficult. Also, there is no well-k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0084596