Refined Hardy inequalities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Hardy–Sobolev Inequalities

Abstract We consider Hardy inequalities in IRn, n ≥ 3, with best constant that involve either distance to the boundary or distance to a surface of co-dimension k < n, and we show that they can still be improved by adding a multiple of a whole range of critical norms that at the extreme case become precisely the critical Sobolev norm. Résumé Nous étudions des inegalités de Hardy dans IRn, n ≥ 3,...

متن کامل

Orlicz-hardy Inequalities

We relate Orlicz-Hardy inequalities on a bounded Euclidean domain to certain fatness conditions on the complement. In the case of certain log-scale distortions of Ln, this relationship is necessary and sufficient, thus extending results of Ancona, Lewis, and Wannebo. 0. Introduction Suppose Ω ⊂ R is a bounded domain and let d(x) = dist(x, ∂Ω). We consider integral Hardy inequalities (0.1) ∀u ∈ ...

متن کامل

Improved Hardy-sobolev Inequalities

Abstract. The main result includes features of a Hardy-type inequality and an inequality of either Sobolev or Gagliardo-Nirenberg type. It is inspired by the method of proof of a recent improved Sobolev inequality derived by M. Ledoux which brings out the connection between Sobolev embeddings and heat kernel bounds. Here Ledoux’s technique is applied to the operator L := x · ∇ and the analysis ...

متن کامل

Higher order Hardy inequalities

This note deals with the inequality (∫ b a |u(x)|w0(x)dx )1/q ≤ C (∫ b a |u(x)|wk(x)dx )1/p , (1) more precisely, with conditions on the parameters p > 1, q > 0 and on the weight functions w0, wk (measurable and positive almost everywhere) which ensure that (1) holds for all functions u from a certain class K with a constant C > 0 independent of u. Here −∞ ≤ a < b ≤ ∞ and k ∈ N and we will cons...

متن کامل

A New Class of General Refined Hardy-type Inequalities with Kernels

Let μ1 and μ2 be positive σ-finite measures on Ω1 and Ω2 respectively, k : Ω1 × Ω2 → R be a non-negative function, and K(x) = ∫ Ω2 k(x, y) dμ2(y), x ∈ Ω1. We state and prove a new class of refined general Hardy-type inequalities related to the weighted Lebesgue spaces L and L, where 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0, convex functions and the integral operators Ak of the form Akf(x) = 1 K(x) ∫ Ω2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE

سال: 2009

ISSN: 2036-2145,0391-173X

DOI: 10.2422/2036-2145.2006.3.03