Reduction of linearized Benjamin-Ono equation to the Schrodinger equation
نویسندگان
چکیده
منابع مشابه
Perturbation theory for the Benjamin–Ono equation
We develop a perturbation theory for the Benjamin–Ono (BO) equation. This perturbation theory is based on the inverse scattering transform for the BO equation, which was originally developed by Fokas and Ablowitz and recently refined by Kaup and Matsuno. We find the expressions for the variations of the scattering data with respect to the potential, as well as the dual expression for the variat...
متن کاملOn the Controllability and Stabilization of the Linearized Benjamin-ono Equation
In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation suc...
متن کاملAsymptotic stability of solitons for the Benjamin-Ono equation
In this paper, we prove the asymptotic stability of the family of solitons of the Benjamin-Ono equation in the energy space. The proof is based on a Liouville property for solutions close to the solitons for this equation, in the spirit of [16], [18]. As a corollary of the proofs, we obtain the asymptotic stability of exact multi-solitons.
متن کاملComplex-valued Solutions of the Benjamin–ono Equation
We prove that the Benjamin–Ono initial-value problem is locally well-posed for small data in the Banach spaces H̃σ(R), σ ≥ 0, of complex-valued Sobolev functions with special low-frequency structure.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematical Forum
سال: 2007
ISSN: 1314-7536
DOI: 10.12988/imf.2007.07049