Reduction of Asynchronous Motor Loss by Heuristic Methods (PSO-GA)
نویسندگان
چکیده
منابع مشابه
Dimensionality Reduction using GA-PSO
The feature selection process can be considered a problem of global combinatorial optimization in machine learning, which reduces the number of features, removes irrelevant, noisy and redundant data, and results in acceptable classification accuracy. In this paper, we propose a combination of genetic algorithms (GAs) and particle swarm optimization (PSO) for feature selection. The K-nearest nei...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملFEASIBILITY OF PSO-ANFIS-PSO AND GA-ANFIS-GA MODELS IN PREDICTION OF PEAK GROUND ACCELERATION
In the present study, two new hybrid approaches are proposed for predicting peak ground acceleration (PGA) parameter. The proposed approaches are based on the combinations of Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed to enhance the accuracy of ANFIS model. To develop hy...
متن کاملTHD Minimization of the Output Voltage for Asymmetrical 27-Level Inverter using GA and PSO Methods
Multilevel voltage source inverters have several advantages compare to traditional voltage source inverter. These inverters reduce cost, get better voltage waveform and decrease Total Harmonic Distortion (THD) by increasing the levels of output voltage. In this paper Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods are used to find the switching angles for achieving to the m...
متن کاملDetermination of Optimal SVM Parameters by Using GA/PSO
The use of support vector machine (SVM) for function approximation has increased over the past few years. Unfortunately, the practical use of SVM is limited because the quality of SVM models heavily depends on a proper setting of SVM hyper-parameters and SVM kernel parameters. Therefore, it is necessary to develop an automated, reliable, and relatively fast approach to determine the values of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics and Electrical Engineering
سال: 2012
ISSN: 2029-5731,1392-1215
DOI: 10.5755/j01.eee.117.1.1053