Reduction (mod $q$) of fusion system amalgams

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of $G_2(q)$, where $2 < q equiv 1(mod 3)$ by order components

In this paper we will prove that the simple group $G_2(q)$, where $2 < q equiv 1(mod3)$ is recognizable by the set of its order components, also other word we prove that if $G$ is a finite group with $OC(G)=OC(G_2(q))$, then $G$ is isomorphic to $G_2(q)$.

متن کامل

A Degree-Decreasing Lemma for (MOD q - MOD p) Circuits

Consider a (MODq;MODp) circuit, where the inputs of the bottom MODp gates are degree-d polynomials with integer coefficients of the input variables (p, q are different primes). Using our main tool — the Degree Decreasing Lemma — we show that this circuit can be converted to a (MODq;MODp) circuit with linear polynomials on the input-level with the price of increasing the size of the circuit. Thi...

متن کامل

Reduction Mod P of Standard Bases

We investigate the behavior of standard bases (in the sense of Hironaka and Grauert) for ideals in rings of formal power series over commutative rings with respect to specializations of the coefficients. For instance, we show that any ideal I of the ring of formal power series A[[X]] = A[[X1, . . . , XN ]] with coefficients in a Noetherian ring A admits a standard basis whose image under every ...

متن کامل

Hilbert-kunz Multiplicity and Reduction Mod P

In this paper, we study the behaviour of Hilbert-Kunz multiplicities (abbreviated henceforth to HK multiplicities) of the reductions to positive characteristics of an irreducible projective curve in characteristic 0. For instance, consider the following question. Let f be a nonzero irreducible homogeneous element in the polynomial ring Z[X1, X2, . . . , Xr], and for any prime number p ∈ Z, let ...

متن کامل

An almost all result on q1q2 ≡ c (mod q)

Davenport [2] used Kloosterman sum estimates to show that the above question is true for all ǫ > 1/3. Using Weil’s bound on Kloosterman sums (see equation (2)), Davenport’s argument implies the truth of Question 1 for all ǫ > 1/4. Recently in [11], Shparlinski got the same result with the further restriction that q1, q2 are relatively prime to one another. When q is a prime number, Garaev [6] o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2011

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-2010-05182-7