Reduction method for functional nonconvex differential inclusions

نویسندگان

چکیده

Our aim in this paper is to present a reduction method that solves first order functional differential inclusion the nonconvex case. This approach based on discretization of time interval, construction approximate solutions by reducing problem without delay and an application known results We generalises earlier results, right hand side has values satisfies linear growth condition instead be integrably bounded. The lack convexity replaced topological properties decomposable sets, represents good alternative absence convexity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Viability Result for Nonconvex Semilinear Functional Differential Inclusions

We establish some sufficient conditions in order that a given locally closed subset of a separable Banach space be a viable domain for a semilinear functional differential inclusion, using a tangency condition involving a semigroup generated by a linear operator.

متن کامل

Viable Solutions for Second Order Nonconvex Functional Differential Inclusions

We prove the existence of viable solutions for an autonomous second-order functional differential inclusions in the case when the multifunction that define the inclusion is upper semicontinuous compact valued and contained in the subdifferential of a proper lower semicontinuous convex function.

متن کامل

On nonresonance impulsive functional nonconvex valued differential inclusions

In this paper a fixed point theorem for contraction multivalued maps due to Covitz and Nadler is used to investigate the existence of solutions for first and second order nonresonance impulsive functional differential inclusions in Banach spaces.

متن کامل

On controllability for nonconvex semilinear differential inclusions

We consider a semilinear differential inclusion and we obtain sufficient conditions for h-local controllability along a reference trajectory.

متن کامل

Discretization Methods for Nonconvex Differential Inclusions

We prove the existence of solutions for the differential inclusion ẋ(t) ∈ F (t, x(t)) + f(t, x(t)) for a multifunction F upper semicontinuous with compact values contained in the generalized Clarke gradient of a regular locally Lipschitz function and f a Carathéodory function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Maltepe journal of mathematics

سال: 2021

ISSN: ['2667-7660']

DOI: https://doi.org/10.47087/mjm.853437