Reduced-Rank Adaptive Filtering Using Krylov Subspace
نویسندگان
چکیده
منابع مشابه
Reduced-Rank Adaptive Filtering Using Krylov Subspace
A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate one red...
متن کاملRobust Reduced-Rank Adaptive Processing Based on Parallel Subgradient Projection and Krylov Subspace Techniques
In this paper, we propose a novel reduced-rank adaptive filtering algorithm by blending the idea of the Krylov subspace methods with the set-theoretic adaptive filtering framework. Unlike the existing Krylov-subspace-based reduced-rank methods, the proposed algorithm tracks the optimal point in the sense of minimizing the ‘true’ mean square error (MSE) in the Krylov subspace, even when the esti...
متن کاملLow-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems
We consider linear systems A(α)x(α) = b(α) depending on possibly many parameters α = (α1, . . . ,αp). Solving these systems simultaneously for a standard discretization of the parameter space would require a computational effort growing exponentially in the number of parameters. We show that this curse of dimensionality can be avoided for sufficiently smooth parameter dependencies. For this pur...
متن کاملConvolutive reduced rank Wiener filtering
If two wide sense stationary time series are correlated then one can be used to predict the other. The reduced rank Wiener filter is the rank constrained linear operator which maps the current value of one time series to an estimate of the current value of the other time series in an optimal way. A closed form solution exists for the reduced rank Wiener filter. This paper studies the problem of...
متن کاملChange-Point Detection using Krylov Subspace Learning
We propose an efficient algorithm for principal component analysis (PCA) that is applicable when only the inner product with a given vector is needed. We show that Krylov subspace learning works well both in matrix compression and implicit calculation of the inner product by taking full advantage of the arbitrariness of the seed vector. We apply our algorithm to a PCA-based change-point detecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Advances in Signal Processing
سال: 2003
ISSN: 1687-6180
DOI: 10.1155/s1110865702209129