Rectifiable oscillations of radially symmetric solutions of p-Laplace differential equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rectifiable oscillations of radially symmetric solutions of p-Laplace differential equations

Let Ω = {x ∈ RN : r0 |x| < 1} with N 2 and r0 ∈ (0,1) . We study a kind of geometric oscillatory and asymptotic behaviour near |x| = 1 of all radially symmetric solutions u = u(x) of the p -Laplace partial differential equation (P) : −div(|∇u| p−2∇u) = f (|x|)|u|p−2u in Ω , u = 0 on |x| = 1 for p > 1 . Necessary and sufficient conditions on the coefficient f (|x|) are given such that u(x) oscil...

متن کامل

STABILITY OF POSITIVE SOLUTIONS TO p&2–LAPLACE TYPE EQUATIONS

In this article, we first show the existence of a positive solution to { −Δpu−αΔu = λ(u− f (u)) in Ω, u = 0 on ∂Ω, by the method of lower and upper solutions and then under certain conditions on f , we show the stability of positive solution. Mathematics subject classification (2010): 35J92, 35B35, 35B05.

متن کامل

$L^p$-existence of mild solutions of fractional differential equations in Banach space

We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work. 

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

A minimal energy tracking method for non-radially symmetric solutions of coupled nonlinear Schrödinger equations

We aim at developing methods to track minimal energy solutions of time-independent mcomponent coupled discrete nonlinear Schrödinger (DNLS) equations. We first propose a method to find energy minimizers of the 1-component DNLS equation and use it as the initial point of the m-component DNLS equations in a continuation scheme. We then show that the change of local optimality occurs only at the b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Equations & Applications

سال: 2012

ISSN: 1847-120X

DOI: 10.7153/dea-04-03