Reconstruction of spatio-temporal temperature from sparse historical records using robust probabilistic principal component regression
نویسندگان
چکیده
منابع مشابه
Reconstruction of spatio-temporal temperature from sparse historical records using robust probabilistic principal component regression
Scientific records of temperature and precipitation have been kept for several hundred years, but for many areas, only a shorter record exists. To understand climate change, there is a need for rigorous statistical reconstructions of the paleoclimate using proxy data. Paleoclimate proxy data are often sparse, noisy, indirect measurements of the climate process of interest, making each proxy uni...
متن کاملRobust Principal Component Regression
In this note we introduce a method for robust principal component regression. Robust principal components are computed from the predictor variables, and they are used afterwards for estimating a response variable by performing robust linear multiple regression. The performance of the method is evaluated at a test data set from geochemistry. Then it is used for the prediction of censored values ...
متن کاملSparse Probabilistic Principal Component Analysis
Principal component analysis (PCA) is a popular dimensionality reduction algorithm. However, it is not easy to interpret which of the original features are important based on the principal components. Recent methods improve interpretability by sparsifying PCA through adding an L1 regularizer. In this paper, we introduce a probabilistic formulation for sparse PCA. By presenting sparse PCA as a p...
متن کاملRobust Sparse Principal Component Analysis
A method for principal component analysis is proposed that is sparse and robust at the same time. The sparsity delivers principal components that have loadings on a small number of variables, making them easier to interpret. The robustness makes the analysis resistant to outlying observations. The principal components correspond to directions that maximize a robust measure of the variance, with...
متن کاملMixtures of robust probabilistic principal component analyzers
Mixtures of probabilistic principal component analyzers model high-dimensional nonlinear data by combining local linear models. Each mixture component is specifically designed to extract the local principal orientations in the data. An important issue with this generative model is its sensitivity to data lying off the low-dimensional manifold. In order to address this problem, the mixtures of r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Statistical Climatology, Meteorology and Oceanography
سال: 2017
ISSN: 2364-3587
DOI: 10.5194/ascmo-3-1-2017