Recommendations for Processing Head CT Data
نویسندگان
چکیده
منابع مشابه
Oblique Image Data Processing – Potential, Experiences and Recommendations
Since about 10 years photogrammetric image data collection provides digital data of outstanding quality and high resolution. Digital camera technology is offering astonishing improvements – this trend will most probably be maintained in the next years to come. The “pixel race” for airborne image sensor systems behaves quite similar as the low-cost, off-the-shelve consumer camera market. Dense I...
متن کاملdetermination of radiosensitive organs in head ct for the head area
computed tomographyrepresents about 10% of all diagnostic radiology procedures, but it isresponsible for almost 50% - 60% of exposure from diagnostic procedures. inhead ct, other critical organs such as eye lenses and thyroids are in theradiation field. therefore, dose assessment in these organs is very important.the aim of this study is to estimate the absorbed dose in critical organs ofpatien...
متن کاملSelecting children for head CT following head injury
OBJECTIVE Indicators for head CT scan defined by the 2007 National Institute for Health and Care Excellence (NICE) guidelines were analysed to identify CT uptake, influential variables and yield. DESIGN Cross-sectional study. SETTING Hospital inpatient units: England, Wales, Northern Ireland and the Channel Islands. PATIENTS Children (<15 years) admitted to hospital for more than 4 h foll...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولRecommendations for open data science
Life science research increasingly relies on large-scale computational analyses. However, the code and data used for these analyses are often lacking in publications. To maximize scientific impact, reproducibility, and reuse, it is crucial that these resources are made publicly available and are fully transparent. We provide recommendations for improving the openness of data-driven studies in l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neuroinformatics
سال: 2019
ISSN: 1662-5196
DOI: 10.3389/fninf.2019.00061