Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration
نویسندگان
چکیده
منابع مشابه
Ultrafast Nanofiltration through Large-Area Single-Layered Graphene Membranes.
Perforated single-layered graphene has demonstrated selectivity and flux that is orders of magnitude greater than state-of-the-art polymer membranes. However, only individual graphene sheets with sizes up to tens of micrometers have been successfully fabricated for pressurized permeation studies. Scaling-up and reinforcement of these atomic membranes with minimum cracks and pinholes remains a m...
متن کاملNanopapers for organic solvent nanofiltration.
Would it not be nice to have an organic solvent nanofiltration membrane made from renewable resources that can be manufactured as simply as producing paper? Here the production of nanofiltration membranes made from nanocellulose by applying a papermaking process is demonstrated. Manufacture of the nanopapers was enabled by inducing flocculation of nanofibrils upon addition of trivalent ions.
متن کاملLarge flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers.
Two types of graphene oxide fibers are spun from high concentration aqueous dopes. Fibers extruded from large flake graphene oxide dope without drawing show unconventional 100% knot efficiency. Fibers spun from small sized graphene oxide dope with stable and continuous drawing yield in good intrinsic alignment with a record high tensile modulus of 47 GPa.
متن کاملPolydicyclopentadiene : a novel organic solvent nanofiltration membrane
Approved: ____________________________________ Thesis Supervisor ____________________________________ Title and Department ____________________________________ Date
متن کاملUltrafast viscous water flow through nanostrand-channelled graphene oxide membranes.
Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5 nm) and superior separation performance. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Advances
سال: 2020
ISSN: 2375-2548
DOI: 10.1126/sciadv.aaz9184