Real quadratic double sums

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Quadratic Double Sums

In 1988, Andrews, Dyson and Hickerson initiated the study of q-hypergeometric series whose coefficients are dictated by the arithmetic in real quadratic fields. In this paper, we provide a dozen q-hypergeometric double sums which are generating functions for the number of ideals of a given norm in rings of integers of real quadratic fields and prove some related identities.

متن کامل

Modular Invariants for Real Quadratic Fields and Kloosterman Sums

We investigate the asymptotic distribution of integrals of the j-function that are associated to ideal classes in a real quadratic field. To estimate the error term in our asymptotic formula, we prove a bound for sums of Kloosterman sums of half-integral weight which is uniform in every parameter. To establish this estimate we prove a variant of Kuznetsov’s formula where the spectral data is re...

متن کامل

Weyl Sums for Quadratic Roots

The most powerful methods for handling these sums exploit the modern theory of automorphic forms; see [DFI1] for spectral aspects and [DIT] for more arithmetical connections. The sum (1.1) has only a few terms, bounded by the divisor function, so there is not much room for cancellation, but for applications there is a lot of interest in bounds for sums of these as the modulus c varies, say (1.2...

متن کامل

Subset Sums Avoiding Quadratic Nonresidues

It is a well-known problem to give an estimate for the largest clique of the Paley-graph, i.e. , to give an estimate for |A| if A ⊂ Fp (p ≡ 1 (mod 4)) is such that A−A = {a−a′ |a, a′ ∈ A} avoids the set of quadratic nonresidues. In this paper we will study a much simpler problem namely when A− A is substituted by the set FS(A) = { ∑ εaa | εa = 0 or 1 and ∑ εa > 0}. In other words we will estima...

متن کامل

Note on the Quadratic Gauss Sums

Let p be an odd prime and {χ(m) = (m/p)}, m = 0,1, . . . ,p − 1 be a finite arithmetic sequence with elements the values of a Dirichlet character χ modp which are defined in terms of the Legendre symbol (m/p), (m,p)= 1. We study the relation between the Gauss and the quadratic Gauss sums. It is shown that the quadratic Gauss sumsG(k;p) are equal to the Gauss sums G(k,χ) that correspond to this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2015

ISSN: 0019-3577

DOI: 10.1016/j.indag.2015.06.002