Reachability-Based Trajectory Safeguard (RTS): A Safe and Fast Reinforcement Learning Safety Layer for Continuous Control

نویسندگان

چکیده

Reinforcement Learning (RL) algorithms have achieved remarkable performance in decision making and control tasks by reasoning about long-term, cumulative reward using trial error. However, during RL training, applying this trial-and-error approach to real-world robots operating safety critical environment may lead collisions. To address challenge, letter proposes a Reachability-based Trajectory Safeguard (RTS), which leverages reachability analysis ensure training operation. Given known (but uncertain) model of robot, RTS precomputes Forward Reachable Set the robot tracking continuum parameterized trajectories. At runtime, agent selects from receding-horizon way robot; FRS is used identify if agent's choice safe or not, adjust unsafe choices. The efficacy method illustrated static environments on three nonlinear models, including 12-D quadrotor drone, simulation comparison with state-of-the-art motion planning methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lyapunov Design for Safe Reinforcement Learning Control

We propose a general approach to safe reinforcement learning control based on Lyapunov design methods. In our approach, a Lyapunov function—a special form of domain knowledge—is used to formulate the action choices available to a reinforcement learning agent. A learning agent choosing among these actions provably enjoys performance guarantees, and satisfies safety constraints of various kinds. ...

متن کامل

Reinforcement Learning for Continuous Stochastic Control Problems

This paper is concerned with the problem of Reinforcement Learning (RL) for continuous state space and time stocha.stic control problems. We state the Harnilton-Jacobi-Bellman equation satisfied by the value function and use a Finite-Difference method for designing a convergent approximation scheme. Then we propose a RL algorithm based on this scheme and prove its convergence to the optimal sol...

متن کامل

Benchmarking Deep Reinforcement Learning for Continuous Control

Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning. Some notable examples include training agents to play Atari games based on raw pixel data and to acquire advanced manipulation skills using raw sensory inputs. However, it has been difficult to quantify progress in the domain of continuou...

متن کامل

Fast Reinforcement Learning in Continuous Action Spaces

A new fast algorithm for reinforcement learning (RL) in continuous state and action spaces is proposed. Unlike algorithms based on dynamic programming, the proposed algorithm uses neither temporal nor spatial diierencing. Instead, it couples the solution of the Hamilton-Jacobi-Bellman (HJB) partial diierential equation with the structure of the function approximators that are commonly used toge...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE robotics and automation letters

سال: 2021

ISSN: ['2377-3766']

DOI: https://doi.org/10.1109/lra.2021.3063989