RCHOL: Randomized Cholesky Factorization for Solving SDD Linear Systems

نویسندگان

چکیده

Related DatabasesWeb of Science You must be logged in with an active subscription to view this.Article DataHistorySubmitted: 16 November 2020Accepted: 31 August 2021Published online: 21 December 2021Keywordsrandomized numerical linear algebra, incomplete Cholesky factorization, sparse matrix, symmetric diagonally dominant graph Laplacian, random samplingAMS Subject Headings65F08, 65F50, 62D05Publication DataISSN (print): 1064-8275ISSN (online): 1095-7197Publisher: Society for Industrial and Applied MathematicsCODEN: sjoce3

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparsified Cholesky Solvers for SDD linear systems

We show that Laplacian and symmetric diagonally dominant (SDD) matrices can be well approximated by linear-sized sparse Cholesky factorizations. Specifically, n × n matrices of these types have constant-factor approximations of the form LL , where L is a lowertriangular matrix with O(n) non-zero entries. This factorization allows us to solve linear systems in such matrices in O(n) work and O(lo...

متن کامل

0 Approaching optimality for solving SDD linear systems ∗

We present an algorithm that on input a graph G with n vertices and m+ n− 1 edges and a value k, produces an incremental sparsifier Ĝ with n − 1 +m/k edges, such that the condition number of G with Ĝ is bounded above by Õ(k log n), with probability 1− p. The algorithm runs in time Õ((m log n+ n log n) log(1/p)). As a result, we obtain an algorithm that on input an n × n symmetric diagonally dom...

متن کامل

Solving Systems of Linear Equations on the CELL Processor Using Cholesky Factorization – LAPACK Working Note 184

The STI CELL processor introduces pioneering solutions in processor architecture. At the same time it presents new challenges for the development of numerical algorithms. One is effective exploitation of the differential between the speed of single and double precision arithmetic; the other is efficient parallelization between the short vector SIMD cores. In this work, the first challenge is ad...

متن کامل

Approaching optimality for solving SDD systems

We present an algorithm that on input of an n-vertex m-edge weighted graph G and a value k, produces an incremental sparsifier Ĝ with n− 1+m/k edges, such that the condition number of G with Ĝ is bounded above by Õ(k log n), with probability 1− p. The algorithm runs in time Õ((m logn+ n log n) log(1/p)). As a result, we obtain an algorithm that on input of an n × n symmetric diagonally dominant...

متن کامل

A METHOD FOR SOLVING FUZZY LINEAR SYSTEMS

In this paper we present a method for solving fuzzy linear systemsby two crisp linear systems. Also necessary and sufficient conditions for existenceof solution are given. Some numerical examples illustrate the efficiencyof the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2021

ISSN: ['1095-7197', '1064-8275']

DOI: https://doi.org/10.1137/20m1380624