منابع مشابه
SVM-Kmeans: Support Vector Machine based on Kmeans Clustering for Breast Cancer Diagnosis
Breast cancer is the most common cancer in women, and is considered one of the most common causes of death. It increases by an alarming rate globally. Earlier detection and diagnosis could save lives and improve quality of life. In this paper, a new method for breast cancer diagnosis is presented. The proposed method, SVM-Kmeans, combines Kmeans, an unsupervised learning clustering technique, w...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملW-kmeans: Clustering News Articles Using WordNet
Document clustering is a powerful technique that has been widely used for organizing data into smaller and manageable information kernels. Several approaches have been proposed suffering however from problems like synonymy, ambiguity and lack of a descriptive content marking of the generated clusters. We are proposing the enhancement of standard kmeans algorithm using the external knowledge fro...
متن کاملNovel centroid selection approaches for KMeans-clustering based recommender systems
Recommender systems have the ability to filter unseen information for predicting whether a particular user would prefer a given item when making a choice. Over the years, this process has been dependent on robust applications of data mining and machine learning techniques, which are known to have scalability issues when being applied for recommender systems. In this paper, we propose a k-means ...
متن کاملa hybrid geospatial data clustering method for hotspot analysis
traditional leveraging statistical methods for analyzing today’s large volumes of spatial data have high computational burdens. to eliminate the deficiency, relatively modern data mining techniques have been recently applied in different spatial analysis tasks with the purpose of autonomous knowledge extraction from high-volume spatial data. fortunately, geospatial data is considered a proper s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advances in Intelligent Informatics
سال: 2015
ISSN: 2548-3161,2442-6571
DOI: 10.26555/ijain.v1i2.38