Ray class field of prime conductor of a real quadratic field
نویسندگان
چکیده
منابع مشابه
The least inert prime in a real quadratic field
In this paper, we prove that for any positive fundamental discriminant D > 1596, there is always at least one prime p ≤ D0.45 such that the Kronecker symbol (D/p) = −1. This improves a result of Granville, Mollin and Williams, where they showed that the least inert prime p in a real quadratic field of discriminant D > 3705 is at most √ D/2. We use a “smoothed” version of the Pólya–Vinogradov in...
متن کاملClass numbers of real cyclotomic fields of prime conductor
The class numbers h+l of the real cyclotomic fields Q(ζl + ζ −1 l ) are notoriously hard to compute. Indeed, the number h+l is not known for a single prime l ≥ 71. In this paper we present a table of the orders of certain subgroups of the class groups of the real cyclotomic fields Q(ζl + ζ −1 l ) for the primes l < 10, 000. It is quite likely that these subgroups are in fact equal to the class ...
متن کاملComputing the Hilbert class field of real quadratic fields
Using the units appearing in Stark’s conjectures on the values of L-functions at s = 0, we give a complete algorithm for computing an explicit generator of the Hilbert class field of a real quadratic field. Let k be a real quadratic field of discriminant dk, so that k = Q( √ dk), and let ω denote an algebraic integer such that the ring of integers of k is Ok := Z+ ωZ. An important invariant of ...
متن کاملReal Quadratic Fields with Abelian 2-class Field Tower
We determine all real quadratic number fields with 2-class field tower of length at most 1.
متن کاملDefining relations of a group $Gamma= G^{3,4}(2,Z)$ and its action on real quadratic field
In this paper, we have shown that the coset diagrams for the action of a linear-fractional group $Gamma$ generated by the linear-fractional transformations $r:zrightarrow frac{z-1}{z}$ and $s:zrightarrow frac{-1}{2(z+1)}$ on the rational projective line is connected and transitive. By using coset diagrams, we have shown that $r^{3}=s^{4}=1$ are defining relations for $Gamma$. Furt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 2004
ISSN: 0386-2194
DOI: 10.3792/pjaa.80.83