Rational so(3) Gaudin model with general boundary terms

نویسندگان

چکیده

We study the so(3) Gaudin model with general boundary K-matrix in framework of algebraic Bethe ansatz. The off-shell action generating function Hamiltonians is determined. proof based on mathematical induction presented level without any restriction whatsoever parameters. terms are given explicitly as well their states. correspondence between states and solutions to generalized Knizhnik-Zamolodchikov equations established. In this context, on-shell norm determined scalar product.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 + 1 Gaudin Model

We study 1+1 field-generalizations of the rational and elliptic Gaudin models. For sl(N) case we introduce equations of motion and L-A pair with spectral parameter on the Riemann sphere and elliptic curve. In sl(2) case we study the equations in detail and find the corresponding Hamiltonian densities. The n-site model describes n interacting Landau– Lifshitz models of magnets. The interaction d...

متن کامل

Zn elliptic Gaudin model with open boundaries

The Zn elliptic Gaudin model with integrable boundaries specified by generic nondiagonal K-matrices with n+ 1 free boundary parameters is studied. The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The eigenvalues and the corresponding Bethe ansatz equations are obtained. PACS: 03.65.Fd; 04.20.Jb; 05.30.-d; 75.10.Jm

متن کامل

Hardy Inequalities with Boundary Terms

In this note, we present some Hardy type inequalities for functions which do not vanish on the boundary of a given domain. We establish these inequalities for both bounded and unbounded domains and also obtain the best embedding constants in these inequalities for special domains. Our results are motivated by and building upon some recent work in [5, 6, 9, 12].

متن کامل

5 Gaudin model and opers

This is a review of our previous works [FFR, F1, F3] (some of them joint with B. Feigin and N. Reshetikhin) on the Gaudin model and opers. We define a commutative subalgebra in the tensor power of the universal enveloping algebra of a simple Lie algebra g. This algebra includes the hamiltonians of the Gaudin model, hence we call it the Gaudin algebra. It is constructed as a quotient of the cent...

متن کامل

AN INTEGRABLE DISCRETIZATION OF THE RATIONAL su(2) GAUDIN MODEL AND RELATED SYSTEMS

The first part of the present paper is devoted to a systematic construction of continuous-time finite-dimensional integrable systems arising from the rational su(2) Gaudin model through certain contraction procedures. In the second part, we derive an explicit integrable Poisson map discretizing a particular Hamiltonian flow of the rational su(2) Gaudin model. Then, the contraction procedures en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B

سال: 2022

ISSN: ['1873-1562', '0550-3213']

DOI: https://doi.org/10.1016/j.nuclphysb.2022.115747