Rational Equivalences on Products of Elliptic Curves in a Family

نویسندگان

چکیده

Given a pair of elliptic curves $E_1,E_2$ over field $k$, we have natural map $\text{CH}^1(E_1)_0\otimes\text{CH}^1(E_2)_0\to\text{CH}^2(E_1\times E_2)$, and conjecture due to Beilinson predicts that the image this is finite when $k$ number field. We construct $2$-parameter family can be used produce examples pairs where finite. The constructed guarantee existence rational curve passing through specified point in Kummer surface $E_1\times E_2$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

On computing rational torsion on elliptic curves

We introduce an l-adic algorithm to efficiently determine the group of rational torsion points on an elliptic curve. We also make a conjecture about the discriminant of the m-division polynomial of an elliptic curve.

متن کامل

Principal Polarizations on Products of Elliptic Curves

An abelian variety admits only a finite number of isomorphism classes of principal polarizations. The paper gives an interpretation of this number in terms of class numbers of definite Hermitian forms in the case of a product of elliptic curves without complex multiplication. In the case of a self-product of an elliptic curve, as well as in the two-dimensional case, classical class number compu...

متن کامل

Massey and Fukaya Products on Elliptic Curves

This note is a continuation of [6]. Its goal is to show that some higher Massey products on elliptic curve can be computed as higher compositions in Fukaya category of the dual symplectic torus in accordance with the homological mirror conjecture of M. Kontsevich [4]. Namely, we consider triple Massey products of very simple type which are uniquely defined, compute them in terms of theta-functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Theorie des Nombres de Bordeaux

سال: 2021

ISSN: ['1246-7405', '2118-8572']

DOI: https://doi.org/10.5802/jtnb.1148