Rate Constants, Time Scales, and Free Energy Landscapes in Thermally Activated Processes
نویسندگان
چکیده
منابع مشابه
Free energy dependence of the diffusion-limited quenching rate constants in photoinduced electron transfer processes.
Electron-transfer rate constants were determined by means of lifetime measurements for the fluorescence quenching of 9,10-dicyanoanthracene by aromatic amines and methoxybenzenes as electron donors, and for the quenching of the synthetic dyes eosin Y and phenosafranine by a series of p-benzoquinones as electron acceptors. All determinations were carried out in acetonitrile at 298 K. The quenchi...
متن کاملThermally activated processes in polymer dynamics.
Jumps between neighboring minima in the energy landscape of both homopolymeric and heteropolymeric chains are numerically investigated by determining the average escape time from different valleys. The numerical results are compared to the theoretical expression derived by Langer [J.S. Langer, Ann. Phys. (N.Y.) 54, 258 (1969)] with reference to a 2N-dimensional space. Our simulations indicate t...
متن کاملObservation time scale, free-energy landscapes, and molecular symmetry.
When structures that interconvert on a given time scale are lumped together, the corresponding free-energy surface becomes a function of the observation time. This view is equivalent to grouping structures that are connected by free-energy barriers below a certain threshold. We illustrate this time dependence for some benchmark systems, namely atomic clusters and alanine dipeptide, highlighting...
متن کاملMeasuring temperature-dependent activation energy in thermally activated processes: a 2D Arrhenius plot method.
Thermally activated processes are characterized by two key quantities, activation energy (E(a)) and pre-exponential factor (nu(0)), which may be temperature dependent. The accurate measurement of E(a), nu(0), and their temperature dependence is critical for understanding the thermal activation mechanisms of non-Arrhenius processes. However, the classic 1D Arrhenius plot-based methods cannot una...
متن کاملFractal free energy landscapes in structural glasses.
Glasses are amorphous solids whose constituent particles are caged by their neighbours and thus cannot flow. This sluggishness is often ascribed to the free energy landscape containing multiple minima (basins) separated by high barriers. Here we show, using theory and numerical simulation, that the landscape is much rougher than is classically assumed. Deep in the glass, it undergoes a 'roughne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2014
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2013.11.2275