منابع مشابه
The Effects of Shilajit on Brain Edema, Intracranial Pressure and Neurologic Outcomes following the Traumatic Brain Injury in Rat
Objective(s): Brain edema is one of the most serious causes of death within the first few days after trauma brain injury (TBI). In this study we have investigated the role of Shilajit on brain edema, blood-brain barrier (BBB) permeability, intracranial pressure (ICP) and neurologic outcomes following brain trauma. Materials and Methods: Diffuse traumatic brain trauma was indu...
متن کاملcharacterizing the mechanical properties of rat brain tissue in tension
background: characterizing the mechanical properties of brain tissue is deemed important for developing a comprehensive knowledge of the mechanisms underlying brain diseases. mechanical properties of very soft tissues, such as brain until recently have been attracted the attention of researchers because these tissues do not tolerate mechanical loads. the mechanical properties of brain tissue, h...
متن کاملThe Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat
Background: In previous studies, the neuroprotective effect of 17&beta-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17&beta-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into...
متن کاملCortical tissue pressure gradients in early ischemic brain edema.
We examined the role of ischemic brain edema, tissue pressure gradients, and regional CBF (rCBF) in adjacent regions of cerebral cortex in cats with middle cerebral artery (MCA) occlusion (MCAO). Tissue pressure, rCBF, and water content were measured from gray matter in the central core and the peripheral margin of the MCA territory over 6 h after MCAO. Ventricular fluid pressure and CSF pressu...
متن کاملInterstitial pressure, volume, and flow during infusion into brain tissue.
A model of infusion-induced swelling in the brain is presented, in which gray and white matter are treated as poroelastic media. The distributions of interstitial pressure, flow, and volume are derived for steady-state and transient infusion protocols. A significant percentage increase in interstitial volume is predicted near the injection site, despite only a modest increase in tissue-averaged...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2006
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.20.5.lb28-d