Rare-earth Activated Pyrosilicate-type Powder Scintillator
نویسندگان
چکیده
منابع مشابه
Mechanism of Rare Earth Incorporation and Crystal Growth of Rare Earth Containing Type-I Clathrates
Type-I clathrates possess extremely low thermal conductivities, a property that makes them promising materials for thermoelectric applications. The incorporation of cerium into one such clathrate has recently been shown to lead to a drastic enhancement of the thermopower, another property determining the thermoelectric efficiency. Here we explore the mechanism of the incorporation of rare earth...
متن کاملRare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications
Nitridosilicates are structurally built up on three-dimensional SiN4 tetrahedral networks, forming a very interesting class of materials with high thermomechanical properties, hardness, and wide band gap. Traditionally, nitridosilicates are often used as structural materials such as abrasive particles, cutting tools, turbine blade, etc. Recently, the luminescence of rare earth doped nitridosili...
متن کاملCombustion and Ball Milled Synthesis of Rare Earth Nano-Sized Ceria Powder
This paper reports a study on nanocrystalline ceria powder prepared by high energy ball-milling and combustion synthesis methods. The combustion synthesis was carried out using ceric ammonium nitrate as oxidizer and citric acid, glycine or citric acid plus glycine as fuel. The minimum crystallite size of ceria powder is obtained by combustion synthesis of ceric ammonium nitrate and citric acid....
متن کاملRare Earth Elements Profile
Definitions and characteristics The rare earth elements (REE) (sometimes referred to as the rare earth metals) are a group of 17 chemically similar metallic elements, including the 15 lanthanides, scandium and yttrium. The lanthanides are elements spanning atomic numbers 57 (lanthanum, La) to 71 (lutetium, Lu) (Table 1). The lanthanides all occur in nature, although promethium, the rarest, only...
متن کاملRare-Earth Separation Using Bacteria
The rare-earth elements are critical to many green energy technologies but are difficult to separate from one another because of their chemical similarity. We demonstrate an alternative, biogenic method based on the adsorption of lanthanide to the bacterium Roseobacter sp. AzwK-3b, immobilized on an assay filter, followed by subsequent desorption as a function of pH. The elution desorption data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hosokawa Powder Technology Foundation ANNUAL REPORT
سال: 2016
ISSN: 2189-4663
DOI: 10.14356/hptf.15509