Rankin–Selberg local factors modulo $$\ell $$ ℓ

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph factors modulo k

We prove a general result on graph factors modulo k. A special case says that, for each natural number k, every (12k − 7)-edge-connected graph with an even number of vertices contains a spanning subgraph in which each vertex has degree congruent to k modulo 2k.

متن کامل

Stochastic Local Search for Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is essential for many practical applications, e.g., in hardand software verification, and increasingly also in other scientific areas like computational biology. A large number of applications in these areas benefit from bit-precise reasoning over finite-domain variables. Current approaches in this area translate a formula over bit-vectors to an equisatisfia...

متن کامل

A $2\ell k$ Kernel for $\ell$-Component Order Connectivity

In the `-Component Order Connectivity problem (` ∈ N), we are given a graph G on n vertices, m edges and a non-negative integer k and asks whether there exists a set of vertices S ⊆ V (G) such that |S| ≤ k and the size of the largest connected component in G−S is at most `. In this paper, we give a kernel for `-Component Order Connectivity with at most 2`k vertices that takes nO(`) time for eve...

متن کامل

Rethinking $(k,\ell)$-anonymity in social graphs: $(k,\ell)$-adjacency anonymity and $(k,\ell)$-(adjacency) anonymous transformations

This paper treats the privacy-preserving publication of social graphs in the presence of active adversaries, that is, adversaries with the ability to introduce sybil nodes in the graph prior to publication and leverage them to create unique fingerprints for a set of victim nodes and re-identify them after publication. Stemming from the notion of (k, l)-anonymity, we introduce (k, l)-anonymous t...

متن کامل

Reducing the Minimal Representation Modulo l ; An Exercise

Let G be a simply connected Chevalley group over a p-adic field, with the residue field of order q, corresponding to an irreducible simply laced root system. We show that the minimal representation V of G can be defined over Q. We show that the reduction of V modulo l 6= p is minimal (in appropriate sense) and is irreducible for l outside an explicit, finite set determined by q.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Selecta Mathematica

سال: 2016

ISSN: 1022-1824,1420-9020

DOI: 10.1007/s00029-016-0258-6