Rank-revealing decomposition of symmetric indefinite matrices via block anti-triangular factorization
نویسندگان
چکیده
منابع مشابه
Symmetric indefinite triangular factorization revealing the rank profile matrix
We present a novel recursive algorithm for reducing a symmetric matrix to a triangular factorization which reveals the rank profile matrix. That is, the algorithm computes a factorization PAP = LDL where P is a permutation matrix, L is lower triangular with a unit diagonal and D is symmetric block diagonal with 1×1 and 2×2 antidiagonal blocks. The novel algorithm requires O(n2rω−2) arithmetic o...
متن کاملComputing Symmetric Rank-Revealing Decompositions via Triangular Factorization
We present a family of algorithms for computing symmetric rank-revealing VSV decompositions, based on triangular factorization of the matrix. The VSV decomposition consists of a middle symmetric matrix that reveals the numerical rank in having three blocks with small norm, plus an orthogonalmatrix whose columns span approximations to the numerical range and null space. We show that for semi-de ...
متن کاملAccurate Symmetric Rank Revealing and Eigendecompositions of Symmetric Structured Matrices
We present new O(n3) algorithms that compute eigenvalues and eigenvectors to high relative accuracy in floating point arithmetic for the following types of matrices: symmetric Cauchy, symmetric diagonally scaled Cauchy, symmetric Vandermonde, and symmetric totally nonnegative matrices when they are given as products of nonnegative bidiagonal factors. The algorithms are divided into two stages: ...
متن کاملComputing the rank revealing factorization of symmetric matrices by the semiseparable reduction
An algorithm for reducing a symmetric dense matrix into a symmetric semiseparable one by orthogonal similarity transformations and an efficient implementation of the QR–method for symmetric semiseparable matrices have been recently proposed. In this paper, exploiting the properties of the latter algorithms, an algorithm for computing the rank revealing factorization of symmetric matrices is con...
متن کاملAnalysis of Block LDL Factorizations for Symmetric Indefinite Matrices∗
We consider the block LDL factorizations for symmetric indefinite matrices in the form LBL , where L is unit lower triangular and B is block diagonal with each diagonal block having dimension 1 or 2. The stability of this factorization and its application to solving linear systems has been well-studied in the literature. In this paper we give a condition under which the LBL factorization will r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2016
ISSN: 0024-3795
DOI: 10.1016/j.laa.2015.09.037