Randomly coloring simple hypergraphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomly coloring simple hypergraphs

We study the problem of constructing a (near) uniform random proper q-coloring of a simple k-uniform hypergraph with n vertices and maximum degree ∆. (Proper in that no edge is mono-colored and simple in that two edges have maximum intersection of size one). We show that if for some α < 1 we have ∆ ≥ n and q ≥ ∆ then Glauber dynamics will become close to uniform in O(n log n) time from a random...

متن کامل

Randomly coloring simple hypergraphs with fewer colors

We study the problem of constructing a (near) uniform random proper q-coloring of a simple k-uniform hypergraph with n vertices and maximum degree ∆. (Proper in that no edge is mono-colored and simple in that two edges have maximum intersection of size one). We show that if q ≥ max { Ck log n, 500k 3∆1/(k−1) } then the Glauber Dynamics will become close to uniform in O(n log n) time, given a ra...

متن کامل

Randomly colouring simple hypergraphs

We study the problem of constructing a (near) random proper q-colouring of a simple k-uniform hypergraph with n vertices and maximum degree ∆. (Proper in that no edge is mono-coloured and simple in that two edges have maximum intersection of size one). We give conditions on q,∆ so that if these conditions are satisfied, Glauber dynamics will converge in O(n log n) time from a random (improper) ...

متن کامل

Coloring simple hypergraphs

Fix an integer k ≥ 3. A k-uniform hypergraph is simple if every two edges share at most one vertex. We prove that there is a constant c depending only on k such that every simple k-uniform hypergraph H with maximum degree ∆ has chromatic number satisfying χ(H) < c ( ∆ log ∆ ) 1 k−1 . This implies a classical result of Ajtai-Komlós-Pintz-Spencer-Szemerédi and its strengthening due to Duke-Lefman...

متن کامل

Multipass greedy coloring of simple uniform hypergraphs

Let m∗(n) be the minimum number of edges in an n-uniform simple hypergraph that is not two colorable. We prove that m∗(n) = Ω(4n/ ln(n)). Our result generalizes to r-coloring of b-simple uniform hypergraphs. For fixed r and b we prove that a maximum vertex degree in b-simple n-uniform hypergraph that is not r-colorable must be Ω(rn/ ln(n)). By trimming arguments it implies that every such graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Processing Letters

سال: 2011

ISSN: 0020-0190

DOI: 10.1016/j.ipl.2011.06.001